

Good farming practices for environmental management

Dairy Farm Systems

Dairy Partners

Introduction

Implementing good farming practices on-farm is not only efficient – it helps to minimise business risk and reduce environmental impact. It is 'the right thing to do' and makes business sense.

This guide describes what good environmental management looks like on a dairy farm and focuses on ten key areas for environmental management:

- Nutrients
- Critical Source Areas
- Waterways
- Land and Soil
- Effluent

Each area contains dairy specific Good Farming Practices (GFPs) and detailed explanations of how they can be achieved. It also provides examples of the information that can be used to demonstrate their achievement.

The GFPs are environmental management practices for sustainable dairy farming in New Zealand; and their development has been supported by the dairy companies.

In addition to GFPs, Leading Practices have also been included as suggested future goals for dairy farmers to aim towards.

This Dairy GFP guide is based on the Good Farming Practice Principles initially developed for the Good Farming Practice Action Plan for Water Quality¹. The Action Plan is a voluntary commitment by the wider primary sector to accelerate the uptake of GFPs for water quality (primarily) and quantity outcomes, to measure and demonstrate this uptake, and to communicate progress.

For more information visit **dairynz.co.nz**

DairyNZ Corner Ruakura and Morrinsville Roads Private Bag 3221 Hamilton 3240

Version 2 - 02/2025 DNZ40 - 040

Disclaimer

DairyNZ Limited ("DairyNZ", "we", "our") endeavours to ensure that the information in this publication is accurate and current as at the date of this publication. However, we do not accept liability for any error or omission. The information that appears in this publication is intended to provide the best possible dairy farm management practices, systems and advice that DairyNZ has access to. However, the information is provided as general guidance only and is not intended as a substitute for specific advice. Practices, systems and advice may vary depending on the circumstances applicable to your situation. The information may also be subject to change at any time without notice. DairyNZ takes no responsibility whatsoever for the currency and/or accuracy of this information, its completeness or fitness for purpose.

©DairyNZ Limited 2024

- Water Use and Irrigation
- Hazardous Substances
- Waste Minimisation
- Biodiversity and Mahinga Kai
- Greenhouse Gases

The Dairy GFPs have been developed to provide a more detailed understanding of what is needed on farm to meet good farming practice on dairy farms. They form the foundation of, and underpin farm environment plans, and provide a framework to support reporting of sector progress.

While the Dairy GFP set minimum criteria for dairy farming, in some areas individual dairy farmers may need to go further. This could be where national regulations, or regional council requirements or consent conditions require farmers to meet additional practice standards, in catchments where there are freshwater and/or ecosystem health challenges.

How to use this guide?

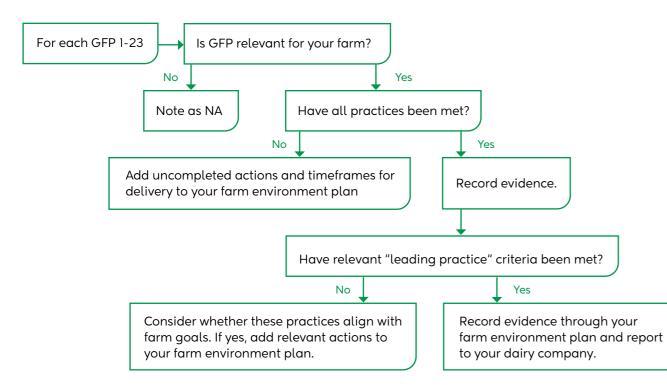
This guide is divided into 10 key environmental management areas: Nutrients, Critical Source Areas, Waterways, Land and Soil, Effluent, Water Use and Irrigation, Hazardous Substances, Waste Minimisation, Biodiversity and Mahinga Kai, and Greenhouse Gases. An overarching Farm Information, Assessment and Reporting section provides guidance on good data, monitoring and reporting approaches.

Each management area is further divided into practices. For each an explanation of what is required to meet good practice is given, plus links to other relevant information. Leading Practice explanations are also given to highlight ways to go beyond good practice.

Practice

For each GFP, identify the practices that are relevant to your farm. For those that are, work out which ones you are already meeting, and which ones you are still working towards.

Step 1


Uncompleted actions and timeframes for completion are added to the farm environment plan.

Evidence

Step 2

For each GFP, if requested, provide evidence for completion of the practice to your dairy company. Examples of types of evidence are given. For actions that have not yet been achieved, capture and prioritise them through your farm environment plan.

Note that dairy companies may use this information to highlight sector progress and scientifically assess the environmental improvements achieved by farmer action. Data will only ever be used in an anonymised way; individual farm actions will not be reported.

Contents

02 Introduction 03

03 How to use this

06 Farm Information, Assessment & Reporting

Minimisation

Waste

48

CONTENTS	Farm	Information,	Assessment	& Reporting
----------	------	--------------	------------	-------------

Nutrients Critico Areas	Source Waterways	0 0 11	Effluent			Waste Minimisation	Biodiversity & Mahinga Kai	
----------------------------	------------------	--------	----------	--	--	-----------------------	-------------------------------	--

Farm Information, Assessment & Reporting

The characteristics of the farm and the farm system are identified²

The property and farm	Physical address
enterprise details ³ are	Owner(s), manager and name and co
recorded, including:	Farm name(s), legal description(s) of t
including.	Size of the operation (hectares)
	A description of the farming activities
A map(s)4 or aerial	Boundaries of the property or land are
photograph of the farm	Boundaries of the main land manage
is produced at a scale that clearly shows:	Location of infrastructure including be stockyards, washdown sites, agrichen effluent ponds, underpasses, feed-pac and irrigation
	Location of permanent and intermitte ponds, dams and wetlands)
	Location of riparian vegetation and few waterways
	Locations where stock access or stock
	Location of any Criticial Source Areas naturally or accumulates, and there is
	Location of any contaminant hotspot yards and stock holding areas, stand-
	Location of flood protection or erosion
	Location of public access routes or ac
	Māori and European archaeological
	Location of any significant indigenous
	Resource consents held by the proper

Farm description and map

Further Information

Evidence

The

²Good Farming Practice (GFP) Principles (2018) alignment: 1.Identify the physical and biophysical characteristics of the farm system, assess the risk factors to water quality associated with the farm system, and manage appropriately ³The property and farm enterprise details will be updated once the FW FP regulatory requirements are known ⁴The mapping information requirements will be updated once the FW FP requirements are known

ntact details of the primary contact person

the land, and any relevant farm identifiers

reas being farmed

ement units and land uses on the property

oundary fences, entranceways, tracks, buildings, nical and fuel storage sites, offal pits, rubbish dumps, ds, wintering or stand-off pads, housing, silage pits

ently flowing waterways (rivers, streams, lakes, drains,

ences (permanent and temporary) adjacent to

crossing of waterways occurs

, i.e., features in the landscape where water flows s a connection to waterways (gullies, swales)

s, i.e., point sources (stock camps, stream crossings, off pads and silage pits)

n control assets, including flood protection vegetation

ccess routes used to maintain waterways

sites

s areas or Mahinga kai sites

rty or farm enterprise

Freshwater Farm Plan Regulations; Regional Plan Rules; Consent Conditions

A risk assessment of the farms inherent and management activity risks is undertaken⁵

A risk assessment ⁶ is	Risk Identification – List the relevant rules and regulations that must be met, the farm management activities being undertaken, and the farms inherent risks; from these identify the relevant Dairy GFP for the farm system
undertaken that includes:	Risk Analysis – Assess each Dairy GFP (including any associated rules and regulations) to determine if it is being achieved
	Risk Treatment – List actions to be taken to achieve each Dairy GFP, and rules and regulations, including:
	What actions are already in place
	What actions need to be put in place
	Timeframes for these actions to occur

Accurate and auditable records are kept of annual farm inputs, outputs and management practices⁷

Accurate and auditable records are kept that:	Support the farms risk assessment proc Provide evidence of farm inputs, manage actions being undertaken to achieve the identified through the risk assessment
Leading Practice	Farm management software is used to management activities
Evidence	Records of farm inputs, outputs and m

Evidence

Risk assessment

Further Information

Regulatory requirements

Freshwater Farm Plan Regulations; Regional Plan Rules; Consent Conditions

⁵Good Farming Practice (GFP) Principles (2018) alignment: 1. Identify the physical and biophysical characteristics of the farm system, assess the risk factors to water quality associated with the farm system, and manage appropriately

⁶The risk assessment process will be updated once the FW-FP regulatory requirements are known

Further Information

⁷Good Farming Practice (GFP) Principles (2018) alignment: 2. Maintain accurate and auditable records of annual farm inputs, outputs and management practices

cess

agement practices and outputs that support the he Dairy GFP and reduce any additional risks

to track and record all farm inputs, outputs, and

management practices

Regulatory requirements

Freshwater Farm Plan Regulations; Regional Plan Rules; Consent Conditions

Soil phosphorus levels are monitored and maintained below or within the target ranges for the soil-type and crop⁸

Soil Tests				
For each land management unit Olsen-P (or an		Annually for capital applica		
equivalent reco soil test) levels monitored:	•	Biennially for maintenance		
Leading Practice	Olsen-P scale	(or an equivalent recognised		
Evidence	Olsen-P (or equivalent) soil test mNutrient budget prepared by a suit			

Further Information

Fertiliser Association fertiliser.org.nz/Site/resources/booklets.aspx

fertiliser.org.nz/includes/download.ashx?ID=147241

⁸Good Farming Practice (GFP) Principles (2018) alignment: 4. Monitor soil phosphorus levels and maintain them at or below the agronomic optimum for the farm system

ations

applications

phosphate soil test) is monitored at the paddock

onitoring results

tably qualified person

Regulatory requirements

Freshwater Farm Plan Regulations; Freshwater NES (190-N Cap); Regional Plan Rules; Consent Conditions

The amount and timing of fertiliser inputs, takes account of all sources of nitrogen and phosphorus, matches plant requirements and minimises losses to waterways and groundwater⁹

Soil Tests	
For each land management	Prior to any capital fertiliser applications
unit at a minimum:	Biennially for maintenance fertiliser applications
	Soil tests, including soil mineral N-testing, are taken for every paddock where long-term pasture is going into forage or other crops
	Soil tests are taken at least 6 weeks prior to the fertiliser application ¹⁰

Nutrient Budget

A nutrient budget is	Different soil types
prepared annually by	Different slope classes
a suitably qualified	All sources of nutrient:
person The nutrient	Soil nutrient status (including soil pH)
budget accounts for:	Organic fertilisers including manure and liquid effluent
	Imported feed
	Previous land use (grazings and crops)
	The nutrient budget is used to set the farms annual fertiliser applications for each land

Fertiliser Application Records

All fertiliser applications	Product
are recorded,	Rate
including:	Date
	Location

Fertiliser Application

Feed budgets and feed wedges are used in combination with nutrient budgets to match fertiliser applications to crop/pasture demand

Fertiliser is not applied to permanently flowing or intermittent waterways

Fertiliser is not applied to ephemeral watercourses or Critical Source Areas during high-risk periods

Fertiliser is not applied when the soil is saturated, or run-off could occur from sloping land and/or when tile drains are running

Fertiliser is not applied when rainfall is forecast that would result in the soil becoming saturated or there is a risk of run-off from sloping land

Fertiliser is not applied during periods where there is insufficient soil moisture, for the crop or pasture cover to achieve an agronomic response.

Fertiliser applied during the higher risk months of May, June, and July, must be supported by the following evidence:

Expected response rate and production that would be achieved from the fertiliser application

Record of round length demonstrating adequate time for fertiliser uptake by the crop/ pasture

Soil moisture status demonstrating the soil was not saturated or forecast to become saturated

Soil temperature status demonstrating that the crop/ pasture was actively growing; at a minimum the soil temperature is >6°C and increasing

⁹Good Farming Practice (GFP) Principles (2018) alignment: 5. Manage the amount and timing of fertiliser inputs, taking account of all sources of nutrients, to match plant requirements and minimise risk of losses

¹⁰To allow time for laboratory processing of results

management unit¹¹

¹¹Actual fertiliser application may differ from the nutrient budget due to factors such as seasonal climatic variations and feed supply; any changes must be justified and documentedany changes must be justified and documented

Nitrogen Fertiliser Applications

Feed budgets, feed wedges and nitrogen plans are used to minimise the use of synthetic N-fertiliser

Pasture is at least 25mm high (approximately 1,000 kg/DM/ha) before N-fertiliser is applied

The amount of synthetic nitrogen fertiliser applied is less than the Synthetic Nitrogen Fertiliser Cap regulation limits

The soil temperature is assessed prior to applying N-fertiliser to ensure the crop/ pasture is actively growing; at a minimum the soil temperature is >6°C and increasing

For individual N-fertiliser applications to pasture >30 kg/N/ha, the following evidence must be recorded:

A feed budget demonstrating the feed deficit to be filled

Expected response rate and production that would be achieved from the N-fertiliser application

Record of round length demonstrating adequate time for N-fertiliser uptake

Purchased Nitrogen Surplus

The input and output data required to calculate Purchased Nitrogen Surplus¹² is recorded

Purchased Nitrogen Surplus is at or below the target for the farm¹³

Leading Practice	A nutrient management plan is p relevant nutrients will be manag any change in ownership or man fertiliser.org.nz/Site/code-of-pra plan_template.aspx
	All fertiliser applications are reco Urease inhibitor coated N-fertilis the environment
	Precision fertiliser application sys limited to, paddock scale soil tes applications

- Nutrient budget prepared by a suitably qualified person
 - Soil test monitoring results
 - Fertiliser application records
- Climate data
- SOP's for fertiliser applications

Further Information

Evidence

Nutrient Management Guide

Fertiliser Association

fertiliser.org.nz/Site/code-of-practice

fertiliser.org.nz/includes/download.ashx?ID=147241

¹²Purchased Nitrogen Surplus is the sum of the nitrogen inputs used for production on the farm (e.g., fertiliser, imported feed) minus the total nitrogen that is removed from the farm as products (e.g., meat, milk, crops, exported effluent, supplements sold) ¹³The Purchased Nitrogen Surplus target(s) for your farm can be found on the Dairy tomorrow website dairytomorrow.co.nz

prepared that describes how N, P, K, S, and any other ged to minimise environmental risk and is revisited when nagement occurs.

actice/appendices/appendix_4_nutrient_management_

orded using a geospatial mapping system

ser products are used to minimise the risk of N-losses to

stems and technologies are used, including but not sting, precision placement systems, and variable rate

Regulatory requirements

Freshwater Farm Plan Regulations; Freshwater NES (190-N Cap); Regional Plan Rules; Consent Conditions

Fertiliser is stored and loaded to minimise the risk of spillage and losses to waterways and groundwater¹⁴

Located at least 50 meters away from permanently flowing or intermittent waterways, ephemeral flow paths, critical source areas, and areas prone to flooding or run-off Can contain all stored fertiliser, have an impervious floor and are protected from rain Collect and divert any rain or water away from the storage area Well ventilated with adequate lighting Appropriately signed	Fertiliser storages:
Collect and divert any rain or water away from the storage area Well ventilated with adequate lighting	Located at least 50 meters away from permanently flowing or intermittent waterways, ephemeral flow paths, critical source areas, and areas prone to flooding or run-off
Well ventilated with adequate lighting	Can contain all stored fertiliser, have an impervious floor and are protected from rain
	Collect and divert any rain or water away from the storage area
Appropriately signed	Well ventilated with adequate lighting
	Appropriately signed
Able to contain a spillage and provide secondary containment where appropriate	Able to contain a spillage and provide secondary containment where appropriate

Evidence

Pictures or field observations of fertiliser storage areas

Fertiliser spreading equipment is maintained and calibrated¹⁵

Fertil	iser sprea	ding equipment is maintained in accord	
	Fertiliser spreading equipment is calibrated accordi product being spread		
	Leading Practice	All contractors used for fertiliser sprea	
Prac	lice	fertqual.co.nz/understanding-the-ma	
Evid	ence	Spreading equipment maintenance ar	

Further Information

Fertiliser Association

fertiliser.org.nz/Site/code-of-practice/bestmanagement-practices-considerations/fertiliserhandling/best_management_practices_fertiliser_ handling stor.aspx

Regulatory requirements

Hazardous Substances and New Organisms Act and Regulations; Agricultural Compounds and Veterinary Medicines Act; Health and Safety at Work Act and Regulations; Regional Plan Rules; Consent Conditions

¹⁴Good Farming Practice (GFP) Principles (2018) alignment: 6. Store and load fertiliser to minimise risk of spillage, leaching and loss into waterbodies

Further Information

Land wise

fertiliser.org.nz/Site/code-of-practice

¹⁵Good Farming Practice (GFP) Principles (2018) alignment: 7. Ensure equipment for spreading fertilisers is well maintained and calibrated

dance with the manufacturer's instructions

to the manufacturer's design specifications and the

ading are Spreadmark accredited

irks/spreadmark

nd calibration records

Regulatory requirements

Feed is stored, transported and fed to minimise wastage, leachate and soil damage¹⁶

Storage	
Feed that has the potential to create leachate is stored:	at least 50 metres away from permanently flowing and intermittent waterways
	away from community drinking-water protection zones
	away from ephemeral flow paths or critical source areas
	on hard-sealed or compacted areas
Rainfall run-of	f is diverted to land away from feed storage areas

Feeding out

Permanent feed-out areas are sealed, and all run-off is collected and applied to land via the effluent system

Feed-out areas are located away from permanently flowing or intermittent waterways, ephemeral flow paths, and critical source areas

Soil damage from feeding-out is minimised

Leading Practice	Leachate from stored feed is captured and applied to land via the effluent system
Evidence	Pictures or field observations of feed storage areas

🖉 Furthe	r Information
----------	---------------

Regulatory requirements
Regional Plan Rules

¹⁶Good Farming Practice (GFP) Principles (2018) alignment: 8. Store, transport and distribute feed to minimise wastage, leachate and soil damage

Waterways

Critical Source

Critical **Source Areas**

Critical Source Areas and farm Hot Spots are identified and managed to minimise contaminant losses to waterways¹⁷

Critical Source Areas (CSA) are features in the landscape where water flows or accumulates, and there is a connection to waterways Contaminant Hotspots are areas where there is potential for point source contamination to waterways

Identification and Management

CSA are identified including the time of year the risk occurs, and actions put in place to reduce or mitigate contaminant loss

CSA are not cultivated during times of high-risk

- when the crop or pasture to be sown would not germinate, i.e., at a minimum the soil temperature is >6oC at 9am and increasing
- when rainfall is forecast that would result in sediment run-off to the waterway

Stock are excluded from CSA during times of high-risk

- when rainfall is forecast that would result in run-off to the waterway

Drainage Systems

Run-off from new sub-surface drainage systems is filtered through a wetland or grass buffers, prior to it entering a permanently flowing or intermittent

Tracks and Gateways

Where possible tracks and gateways are located away from all permanently flowing or intermittent waterways and low points in the landscape

If the track or gateway is beside a permanently flowing or intermittent waterway, the ground is sloped in the opposite direction to avoid run-off

Tracks and gateways minimise water ponding, excessive effluent build-up, and erosion

Run-off from tracks and gateways is filtered by a vegetated strip or sediment traps

Run-off from tracks and gateways is filtered by a vegetated strip or sediment traps

¹⁷Good Farming Practice (GFP) Principles (2018) alignment: 9. Identify risk of overland flow of sediment and faecal bacteria on the property and implement measures to minimise transport of these to waterbodies AND 10. Locate and manage farm tracks, gateways, water troughs, self-feeding areas, stock camps, wallows and other sources of run-off to minimise risks to water quality

• when the soil is saturated or when rainfall is forecast that would result in the soil becoming saturated

Troughs

Troughs are located away from waterways, low points in the landscape or wet areas

The area surrounding troughs is maintained to prevent ponding

Stock Crossings

Stock crossings are present on all permanently flowing or intermittent waterways >1 m that stock cross more than once per month

Stock crossing have raised sides or mounds (bunded) to prevent run-off into waterways

Stock crossings (particularly culverts) allow for fish passage

Temporary Feed-out Areas

Temporary feed-out areas (including in-paddock bale placement) are located away from waterways, low points in the landscape, or where run-off to waterways could occur

Infrastructure Management

The condition of drainage systems, tracks and gateways, troughs, and stock crossings are assessed annually, and maintenance carried out accordingly

Leading Practice	Stock are permanently excluded from
	Appropriate vegetative buffers are est or intermittent waterways
	Run-off from all sub-surface drainage vegetative buffers prior to it entering c
	Bunded stock crossings are present or waterways
Fvidence	• Pictures or field observations of crit

• Farm management systems

Critical Source Areass

Waikato Regional Council - CSA

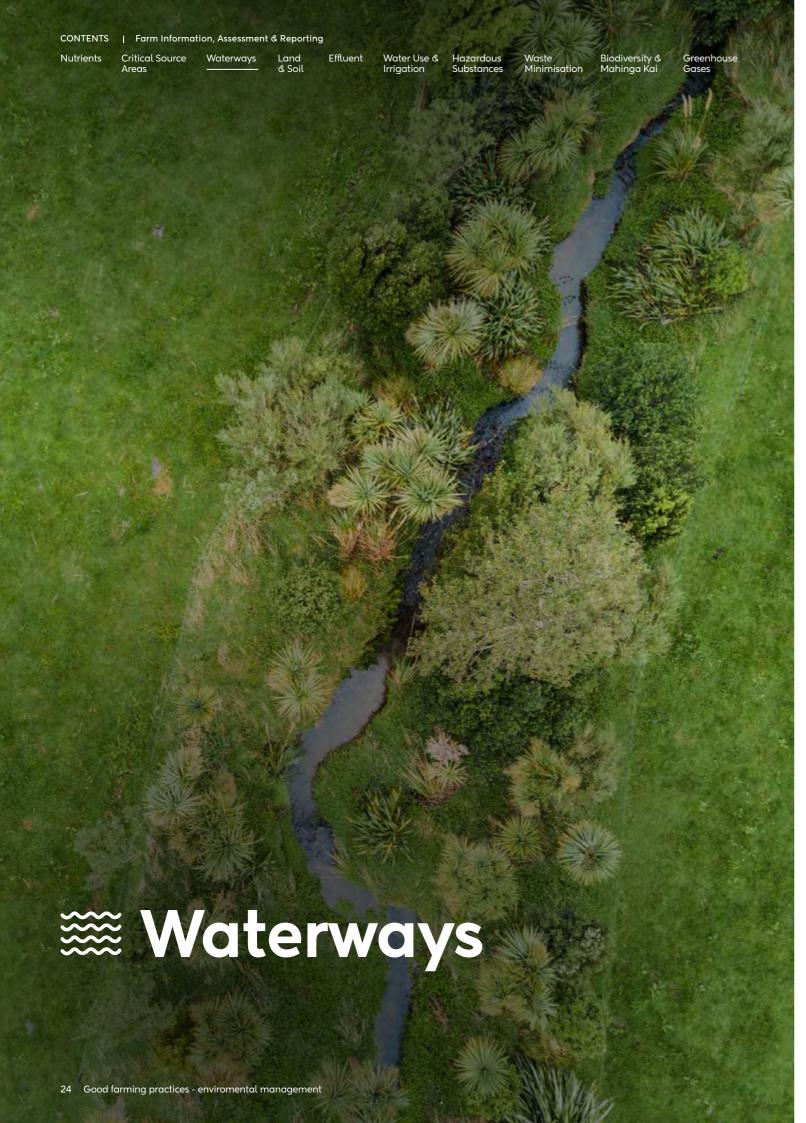
waikatoregion.govt.nz/assets/WRC/WRC-2019/6374-HRWO-critical-source-areas.pdf

Efficient Tracks

Stream crossings

n all CSA

tablished to filter any run-off to permanently flowing


e systems is filtered through a wetland or suitable a permanently flowing or intermittent waterway

on all the farms permanently flowing or intermittent

itical source areas management

Regulatory requirements

Regional Plan Rules

Stock are excluded from lakes and waterways¹⁸

Exclude stock from waterbodies to	Stock are excluded from lakes and p 1 metre				
the extent that is compatible with land form, stock	The setback from the waterway or la fence was in place prior to August 20				
class and stock intensity. Where exclusion is not	A permanent fence means a 2-wire e fence				
possible, mitigate impacts on waterways	The setback (riparian area) is manag pests				
	Stock are excluded from ephemeral flowing				
	Wet areas within paddocks are mar fertiliser				
	Drain cleaning minimises sediment				
	The length of the farms permanently waterways < 1 metre is recorded				
Leading Practice	Stock are excluded from permanent ephemeral flow paths, and perman				
	The livestock exclusion setback is si potential, and is inclusive of any crit				
	A riparian planting plan is in place				
Evidence	• A stock exclusion plan is being a				
	 Field observations of stock exclusions management 				
	• Evidence of the use of temporary				
	Drain management procedures				

¹⁸Good Farming Practice (GFP) Principles (2018) alignment: 10. Exclude stock from waterbodies to the extent that is compatible with land form, stock class and stock intensity. Where exclusion is not possible, mitigate impacts on waterways

and permanently flowing or intermittent waterways >

or lake is a minimum of 3m unless a permanent ust 2020

wire electric fence, a post and batten fence or a deer

nanaged, including the control of plant and animal

neral flow paths if grazing occurs while water is

managed to avoid contamination from stock or

nent and fish losses

nently flowing or intermittent

anently flowing or intermittent waterways < 1 metre, rmanently wet areas

k is site specific, i.e., is related to the slope run-off ny critical source areas

lace and being actively implemented

ing actively implemented.

exclusion, riparian management and drain

orary fencing such as time stamped photographs

Regulatory requirements

Stock Exclusion Regulations; Regional Plan Rules

Nutrients	Critical Source Areas	Waterways	Land & Soil	Effluent	Hazardous Substances	Biodiversity & Mahinga Kai	

Cultivation is managed to reduce the risk of sediment loss and maintain soil structure¹⁹

Paddock Selection					
The suitability of each paddock for cultivation is assessed, and high-risk cultivation activities avoided. Considerations include:	Topography and soil type				
	Proximity to waterways				
	Erosion susceptibility				
	Crop sowing and harvest dates				
	Cultivation methods				
	Previous cropping history				

General Management

Crop rotations are planned to enable timely re-sowing and to minimise the time in bare cover during the high-risk winter period

The use of catch/cover crops should be considered to reduce contaminant losses to water and improve soil quality

Permanent vegetation cover is retained in gullies, on steep slopes or beside waterways

Soil Management

Soil structure is assessed every 3-years using Visual Soil Assessment or equivalent method

Compacted soils are alleviated through deep ripping or aeration

Cultivation is avoided when soil moisture is at or beyond field capacity

No or minimum tillage cultivation techniques are predominantly used such as, direct drillling, strip-tillage, or non-inversion tillage.

Evidence

- Environmental consideration incorporated at an operational level regarding the cultivation, sowing and harvest methods used
- photographs

Further Information

¹⁹Good Farming Practice (GFP) Principles (2018) alignment: 3. Manage farming operations to minimise direct and indirect losses of sediment and nutrients to water, and maintain or enhance soil structure, where agronomically appropriate AND 12. Manage periods of exposed soil between crops / pasture to reduce risk of erosion, overland flow and leaching

部 Land & Soil

Crop rotation and cultivation plans

• Environmental considerations incorporated within the farm businesses crop rotation

Evidence of management actions such as crop or livestock diaries or time stamped

Requirements

Regional Plan Rules

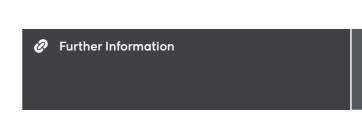
Erosion-prone land is managed or retired to minimise soil losses²⁰

All erosion susceptible areas are mapped and have a soil erosion control programme actively being undertaken

Retire all Class 8 and 7e land (when mapped at the farm scale) from grazing


Leading Practice	Develop and implement an erosion control plan for all erosion susceptible areas, including consideration of:				
	Indigenous forest				
	Exotic forest				
	Space planting				
	Streambank planting				
	Shelterbelts				
	Erosion control structures				

Evidence	•	Erosion susceptibility map
----------	---	----------------------------


Pictures and field observations of erosion control actions being implemented

Grazin	g of	pasti	ures	and	C
minimi	se se	edim	ent	and	CC

Grazing Management			
Erosion susceptibility			
Soil pugging and compaction			
Overgrazing			
Adverse climatic events			
Stock type, class and intensity			
Grazing rounds/rotation lengtl			
Feed or stand-off pads are used durin			
Grazing policy			
Evidence of management actions photographs			

²⁰Good Farming Practice (GFP) Principles (2018) alignment: 13. Manage or retire erosion-prone land to minimise soil losses through appropriate measures and practices

²¹Good Farming Practice (GFP) Principles (2018) alignment: 15. Manage grazing to minimise losses from critical source areas

crops is managed to ontaminant loss²¹

าร

ng periods of wet weather

such as crop or livestock diaries or time stamped

Regulatory requirements

Regional Plan Rules

Paddocks selected for Intensive Winter Grazing (including intensive baleage wintering) are low risk and managed to minimise the risk of erosion, run-off to waterways and leaching to groundwater²²

Paddock Selection Undertake Are away from waterways a risk assessment Livestock must be kept at least 5m away from the bed of any river, lake, wetland or drain, regardless of whether there is any water in it at the time and select low risk paddocks Are 10° or less maximum slope that: Determined by measuring the slope over any 20m distance Are not vulnerable to pugging Are not susceptible to erosion If low risk paddocks are not available adapt the farming system to avoid intensive winter grazing

Waterways

When selecting areas for intensive winter grazing the following land areas are not cultivated (and vegetation cover is maintained) between 1 May to 30 September:

When intensive winter grazing occurs between 1 May and 30 September permanent or temporary fencing that excludes stock from grazing, is placed around:

Ephemeral flow paths or natural drainage channels that run during times of high rainfall

Critical source areas such as gullies or swales

Ephemeral flow paths or natural drainage channels that run during times of high rainfall

Critical source areas such as gullies or swales

Supplementary Feed

Where supplementary feed such as baleage is used, it is strategically placed in the crop prior to the start of winter

Supplementary feeding areas (temporary feed-out area) are located away from permanently flowing or intermittent waterways, ephemeral flow paths, and critical source areas

Supplementary feed is used tactically, for example offer more feed during cold conditions when demand increases and crop utilisation declines

Grazing Management

Take all reasonably practicable steps to minimise pugging

Breaks are actively managed as appropriate for the winter grazing management system

Grazing occurs towards the waterway

Land that has already been grazed is back-fenced; this does not prevent its use to help manage through adverse weather events

Portable water troughs are used for stock drinking water and placed away from ephemeral flow paths and critical source areas, close to the feed face and moved as appropriate for the winter grazing management system

²²Good Farming Practice (GFP) Principles (2018) alignment: 14. Select appropriate paddocks for intensive grazing, recognising and mitigating possible nutrient and sediment loss from critical source areas AND 15. Manage grazing to minimise losses from critical source areas

Vegetation Re-establishment

Resow land as soon as practicable after grazing

Adverse Events

An adverse event management plan is in place that considers animal welfare implications alongside environmental risk management including minimising the risk from pugging

Leading Practice Stand-off pads or paddocks are used during periods of very wet weather

Sediment traps or actively managed constructed wetlands are used minimise sediment loss

Evidence • Resource consent

- Winter grazing plan including:
- Mitigations required for each paddock
- Grazing management procedures
- Managing grazing through extreme rainfall events
- Evidence of farm specific operating procedures and their implementation
- Evidence of farm specific adverse event plans
- Pictures and field observations of grazing and cropping management actions such as time stamped photographs

Regulatory requirements

Freshwater NES

Regional Plan Rules

Further Information

Wintering on crops

Improving your wintering systems

Consent Conditions

NOTES

Effluent and manure is applied at depths, rates and amounts that match plant requirements and minimise the loss of nutrients or microbial pathogens to waterways and groundwater²³

Effluent Manc	ıgement Plan				
An effluent management	Regional rules and consent conditions				
plan is in place that	A farm effluent map that highlights:				
includes:	Waterways				
	Buffer and exclusion zones				
	High and low risk soils				
	Effluent system layout (hydrar				
	System maintenance checks				
	System operating procedures				
	Health and safety				
	Emergency procedures and contacts				

Nutrients

Soil tests are taken biennially in the effluent application area, and fertiliser applications adjusted accordingly

The nutrient loading rules or consent conditions are not exceeded

²³Good Farming Practice (GFP) Principles (2018) alignment: 19. Apply effluent to pasture and crops at depths, rates and times to match plant requirements and minimise risk to waterbodies

5		
nts and runs)		

Application		
All effluent applications are recorded including:	Date	
	Location	
	Depth applied	
Effluent is not applied when soils are at or above field capacity		
Effluent is not applied when rainfall that would result in the soil becoming saturated is forecast		
The application meets the Distribution Uniformity upper quartile (DU $_{uq}$) standard of <1.25		
Average application rates do not exceed the soils infiltration rate		
The odour impact upon neighbouring properties is considered, including any consent conditions		
Failsafe mechanisms are in place:	Low pressure pump cut-off, or	
	Irrigator movement pump cut-off, and	

Pond level sensor

Effluent and Manure Storage

The effluent storage level is actively managed to remain as low as possible for the prevailing climatic conditions

Manure levels are actively managed to remain within the storage bunker

Training

Staff are trained in the effluent systems operation and maintenance

Leading Practice		Effluent area soil moisture is monitore
	Tuctice	An effluent operation and maintenance
	Telemetered proof of placement of efflu	
		Changes in the nutrient composition of across the milking season, by testing efficient area are adjustions to the effluent area are adjusted on the effluent area are adjusted on the action of the section of the secti
	Soil tests are taken annually in the efflu	
	Evidence	Annual soil tests

• Nutrient budget

- Soil moisture monitoring for effluent application decision-making
- Rainfall records
- Evidence of staff training programme

Further Information

Effluent management Plan Poster

Effluent

d using a soil moisture sensor or soil water budget

ce manual is in place and actively used

uent applications

the effluent or manure applied are understood ffluent samples throughout the season; fertiliser ljusted according to nutrient composition

ent application area

• Effluent and manure application records including amount, depth, date, and location

Regulatory requirements

Regional Plan Rules

Consent Conditions

The effluent system is designed, operated and regularly checked to minimise the risk of nutrient and microbial pathogen loss to waterways and groundwater, and to prevent microbial contamination²⁴

New effluent systems include all new developments, and existing system expansions or redevelopments

Dairy sheds

Yards

Barns, feed-pads, and stand-off pads

Underpasses

Feed storage areas (if applicable)

Storage The effluent storage volume is sized to meet either the:

Effluent is collected from all sources:

Plan requirements; or

The 90th percentile storage volume as calculated by the Dairy Effluent Storage Calculator (DESC)

The storage meets local Building Act requirements

The storage is sealed to prevent leakage to groundwater

²⁴Good Farming Practice (GFP) Principles (2018) alignment: 16. Ensure the effluent system meets industry-specific Code of Practice or equivalent standard AND 17. Have sufficient suitable storage available for farm effluent and wastewater AND 18. Ensure equipment for spreading effluent and other organic manures is well maintained and calibrated

Assessment

Effluent system checks are undertaken at least annually, including testing of effluent depth and rate

Maintenance is undertaken as and when required to ensure there is no decline in effluent system performance

Leading Practice	The volume of farm effluent storage m the Dairy Effluent Storage Calculator (I		
	The design of the farm effluent storage Dairy Effluent Ponds		
	An effluent Warrant of Fitness (WOF) is change to the infrastructure		
Evidence	• Evidence provided that the effluent Design company is accredited.		
	Effluent WOF or commissioning test		
	DESC report		
	Storage drop test report		
	Evidence provided of checks and m		

Evidence provided of checks and maintenance

Note: The industry checklist provides a minimum standard for this.

Further Information

Irrigation NZ

irrigationnz.co.nz/PracticalResources/ SpecialistEquipment/Fertigation

FDE designs standards and code of practice 2015

Effluent Systems

meets the 90th percentile volume as calculated by (DESC)

ge is consistent with IPENZ Practice Note 21: Farm

is undertaken every 3-years or when there is a major

t designer is design certified and/or the Effluent

st report/re-test report.

naintenance minimum standard for this.

Regulatory requirements

Regional Plan Rules

Consent Conditions

Critical Source

Water Use & Irrigation

Dairy shed and stock water use is efficient and prevents source contamination²⁵

National regulations, permitted activity or resource consent conditions are met All well heads are sealed, and stock permanently excluded from them A backflow prevention system is installed (where required) Water takes are monitored (stock and dairy shed) and leaks identified and repaired as required Dairy shed water use is efficient, i.e., water use is appropriate for the washdown system

Leading Practice

All water takes are telemetered

Evidence

Reports, pictures, or field observations of well heads and backflow prevention systems • Water monitoring records and farm water supply maintenance logs

Further Information

Bore responsibility - Hawkes Bay Regional Council hbrc.govt.nz/services/water-management/boresecurity

Irrigation NZ

irrigationnz.co.nz/PracticalResources/COP/Fertigation

Water use on farm

²⁵Good Farming Practice (GFP) Principles (2018) alignment: New, not in the 2018 GFP Principles

Regulatory requirements

Water Measurement and Reporting Regulations 2020

Regional Plan Rules

Consent Conditions

The depth, rate and timing of irrigation is managed to meet plant demand and minimise the risk of leaching and run-off

Scheduling

Irrigation decision-making is informed by a soil water budget or soil moisture sensor

For both methods, the soils full-point and irrigation trigger point are correctly set and monitored

Irrigation decision-making also includes monitoring of:

Depth of irrigation applied Rainfall

Weather forecasts

Training

Staff are trained in irrigation system operation and maintenance

Leading Practice	Irrigation management zones are set based on irrigation system operation, soil type and crop type
	Irrigation decision-making is informed by a soil water budget or soil moisture sensor for every irrigation management zone
	An irrigation operation and maintenance manual is in place and used to train staff

Evidence

Sensor trace or data

- Water budget model or calculation
- Evidence of staff training or certificate of attendance for an irrigation workshop

🤣 Further Information

Irrigation NZ - Scheduling irrigationnz.co.nz/PracticalResources/GMP/ Scheduling

Regulatory requirements

Regional Plan Rules

Consent Conditions

The irrigation system is designed, operated and regularly checked to minimise the amount of water applied to meet plant demand, and prevent microbial contamination²⁶

esign & Installation
ational regulations, permitted activity or resource conse
well heads are sealed, and stock permanently excluded
packflow prevention system is installed (where required)
irrigation water takes are telemetered
new irrigation systems are designed and installed in a andards
ew water and irrigation systems include all new develop developments.
Irrigation Design accredited company and/or a certifie
wet' commissioning test is undertaken that includes pre
e design meets a low quartile distribution uniformity (D
sessment
e-season checks, including a visual inspection of the irri igation system annually

A performance assessment is undertaken for each irrigation system every 5-years or:

Further Information

Bore Security - Hawkes Bay Regional council hbrc.govt.nz/services/water-management/bore-security

MfE - measuring and reporting water intakes

environment.govt.nz/publications/measuring-and-repo brochure

Irrigation NZ

- irrigationnz.co.nz/practicalresources/irrigationdevelopn irrigationnz.co.nz/practicalresources/irrigationdevelopn commissioning
- irrigationnz.co.nz/practicalresources/cop/fertigation irrigationnz.co.nz/practicalresources/cop/design
- irrigationnz.co.nz/practicalresources/cop/performancec

²⁶Good Farming Practice (GFP) Principles (2018) alignment: 21. Design, check and operate irrigation systems to minimise the amount of water needed to meet production objectives

ent conditions are met

ed from them

accordance with industry codes of practice and

pments, and existing system expansions or

ed irrigation designer is used.

essure, flow, depth, and uniformity

OU₁) of >0.80.

rigator when it is running, are undertaken for each

when a major system change occurs

there is significant non-compliance

	Regulatory requirements
	Water Measurement and Reporting Regulations 2020
	Regional Plan Rules
ting-water-takes-	
nent/startup	
nent/	
ssessment	

Hazardous substances (agrichemicals and fuel) are stored, handled, used and disposed of to avoid contamination of waterways and groundwater²⁷

An inventory of all hazardous substances stored on-farm is kept, including Safety Data Sheets (SDS) All environmental risks are identified, and staff made aware of these and how they are to be managed Hazardous substance information and training is provided A Certified Handler certificate is held if class 6.1A or 6.1 B are stored or used on site by farm staff Procedures are in place for managing emergencies

Storage	
Agrichemicals a	nd fuels are stored separately
Storages are:	Located away from waterways or are
	Appropriately signed
	Able to contain a spillage and provid

Application

Applications follow the SDS conditions

Application equipment is calibrated at least annually

Before spraying sensitive areas are identified including waterways, or significant indigenous vegetation and/or species

When spraying monitor wind speed and direction to avoid spray drift into waterways or significant indigenous vegetation and/or species

eas prone to flooding

de secondary containment where appropriate

NOTES

Leading Practice	Storage
	All fertiliser and fuel storages are covered
	All agrichemical and fuel storages provide secondary containment
	Application
	Farm applicators hold the GROWSAFE standard (or equivalent) certificate
	Agrichemical contractors hold a GROWSAFE Registered Chemical Applicator (or equivalent) certificate

Evidence	Pictures or field observations of storage areas
	SOPs for hazardous substance handling including emergency procedures
	Inventory of hazardous substances on site and associated SDS.
	 Emergency response kit including spill kit, fire extinguisher, emergency response card, first aid kit
	Appropriate signage (as per SDS requirements)
	Well-maintained PPE (as per SDS requirements)
	Spray records and climate data

Further Information

NZS 8409:2021 (Growsafe)

growsafe.co.nz/StandardManual/Introduction.aspx

Worksafe

worksafe.govt.nz/topic-and-industry/agriculture/ chemicals-and-fuels-on-farms

🕏 Regulatory requirements

Hazardous Substances and New Organisms Act and Regulations

Agricultural Compounds and Veterinary Medicines Act

Health and Safety at Work Act and Regulations

Regional Plan Rules

Farm waste is minimised²⁸

A waste minimisation system is in place which prioritises waste reduction, and where this is not possible focuses on reuse and recycling

Where available, recycling schemes are used for farm waste, e.g., scrap metal, baleage wrap, agrichemical containers, tyres, paint, oil, batteries, and other hazardous substances

Farm dumps and offal pits are located at least 50m away from waterways and above the water table

Hazardous substances are not disposed of in the farm dump

There is no burning of farm dump contents

Leading Practice

All farm waste is sent off farm for disposal in a registered waste facility

• Waste reduction plan

- Evidence of recycling (receipts/ bins)
- Evidence of reuse (timestamped photos)

Further Information

Waste management

²⁸Good Farming Practice (GFP) Principles (2018) alignment: New, not in the 2018 GFP Principles

Regulatory requirements

Regional Plan Rules

Farm indigenous biodiversity and Mahinga Kai values are identified and protected²⁹

Indigenous biodiversity and Mahinga kai values are protected:	Existing areas a
	Existing areas a values
	Existing access

Leading Practice	Indigenous biodiversity and Mah enhanced including:	
	Stock exclusion	
	Planting or regeneration of	
	Plant and animal pest cont	
	Identifiation of less product	
	New plantings	
	Engagment with local hap	

Evidence

• Evidence of plant and animal pest management

🔗 Further Information

Biodiversity

²⁹Good Farming Practice (GFP) Principles (2018) alignment: New, not in the 2018 GFP Principles

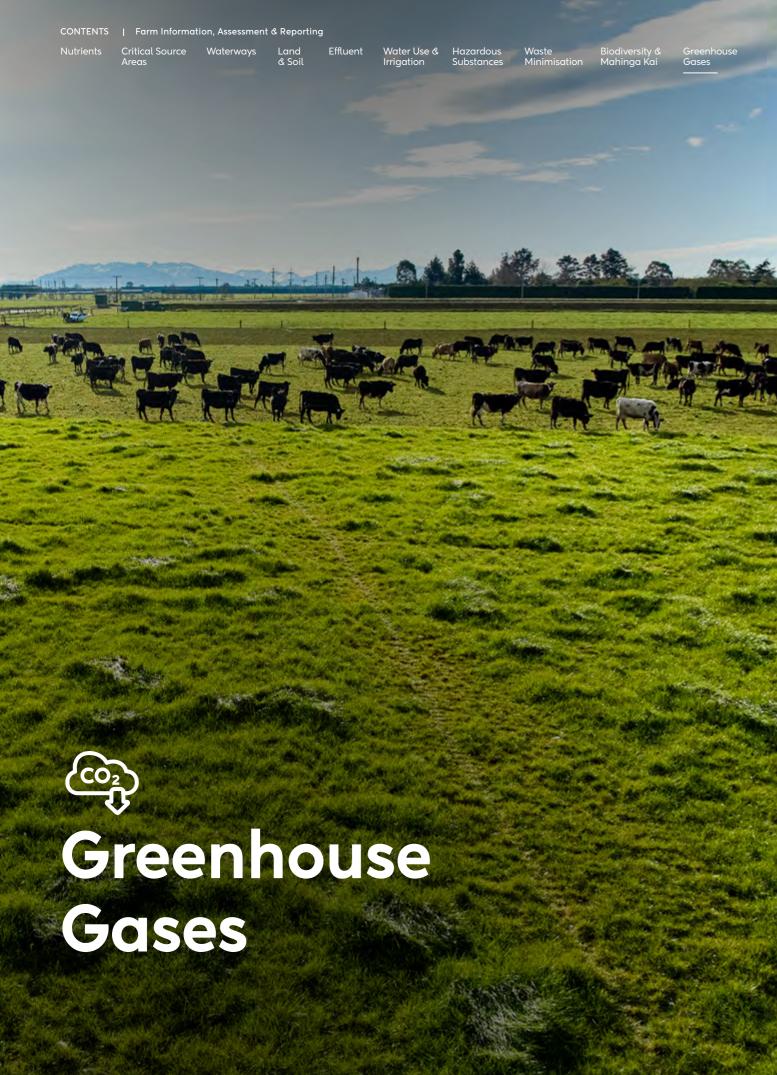
are mapped

are managed to maintain their current integrity and

arrangements to Mahinga kai sites are maintained

hinga Kai values are actively restored and

f existing areas


trol

tive land for restoration projects

u/iwi to improve access to Mahinga kai sites

Regulatory requirements

[•] Farm indigenous biodiversity and Mahinga Kai map

Farm greenhouse gas emissions are known and a plan is in place to reduce or off-set them, that also considers adaptation to climate change³⁰

Agricultural greenhouse gas emissions are known by gas, including:	Methane from:
	Livestock
	• Effluent
	Nitrous oxide from:
	Livestock
	• Fertiliser
A plan is in place to minimise or off-set emissions over time,	Improving the efficiency of pasture an
	Reducing the total amount of feed eat
	Matching feed demand with pasture g
including:	Improving the management of livesto

Leading	Total greenhouse gas emissions are		
Practice	Carbon Dioxide	• Fossil fuels	
		Energy use	
		Sequestratio	
	The plan to minim	ise or off-set emi	
	Adoption of energy	efficient vehicles,	
	Generation of renewable energy		
	Future climate risks and opportuni		
	Temperature and rainfall changes		
	Extreme events		
	Options to increase	e farm resilience	

³⁰Good Farming Practice (GFP) Principles (2018) alignment: New Greenhouse gases: Farm Planning Guidance

nd crop production

iten

growth and utilisation

ock effluent

e known by gas, to also include:

ssions over time, also considers:

machinery, technology, and practices

es are known:

are assessed and implemented

Climate Change

Evidence	Farm greenhouse gas numbers can be providedEvidence of a plan to reduce or off-set emissions	-	Agronomic response	Means beneficio activity
	Region-specific climate change challenges and opportunities can be relayed		Artificial waterway	Means a waterv and a farm drai

Glossary of terms

Agronomic response	Means beneficial crop or past activity
Artificial waterway	Means a waterway that is ma and a farm drain (an artificial reduce surface flood risk).
	They do not include a modifie intermittent waterway has bee
Auditable records	Means the data, information of evidence that an activity has b
Backflow prevention system	Means a system that protects contamination. It may include reduced pressure zone or dou
Capital fertiliser application	Means an application of nutri maintenance requirements as
Catch or Cover crops	Means a fast-growing crop the soil nitrogen and provide vege and/or sediment run-off
Compaction (soil)	Means the damage caused to treading
Contaminant hotspots	Means the areas of the farm w to the environment
Critical Source Areas	Means the same as defined in Freshwater (NES-F):
	A landscape feature such as a accumulates from adjacent la contaminants to waterways, la
Crop rotation	Means the practice of growing
Cultivation	Means any process that involv renewal and cropping
Dairy Good Farming Practices (GFP)	Means the farming activities t help meet environmental obje
Ephemeral flow paths	Means a waterway that tempo event
Erosion susceptible areas	Means the areas on farm that including (but not limited to) s

sture growth is observed from the farm management

an-made including a stock water or irrigation race Il channel designed to lower the water table and/ or

ed waterway (where the flow path of a permanent or een altered)

and documents kept to provide an auditor with sbeen undertaken

s a ground or surface water supply from potential de a physical air gap or a specific device such as a puble-check valve

rients that aims to raise soil nutrient status beyond as measured by soil testing

hat is grown between the main crop to take up excess getative cover to reduce the risk of nitrogen leaching

to soil quality by machinery movements or livestock

where there is a high-risk of contaminants being lost

n the National Environmental Standard for

a gully, swale, or depression where run-off land and delivers or has the potential to deliver lakes and wetlands or their beds

ng crops in succession on the same land

lves turning over or tilling the soil, it includes pasture

that can be reasonably expected of a dairy farmer to jectives

porarily conveys water immediately following a rain

at are eroding or have the potential to erode, surface, gully, slip and streambank erosion.

Failsafe mechanism (effluent)	Means a monitoring device or control system that minimises the risks from a breakdown or poor management of the effluent system	
Farm	Means the dairy milking platform, unless otherwise stated in the Dairy GFP document	
Farm dump	Means a location on-farm used to dispose of general farm waste	
Feed budget	Means a predictive analysis of the seasonal pasture supply in relation to livestock demand, including an estimate of any deficit or surplus	
Feed storage area	Means an area where supplementary feed is stored on-farm, including pits, bunkers, and sheds	
Feed wedge	Means a paddock-scale feed analysis at any given point in time. Measured pasture covers of each paddock are arranged in order of longest to shortest, and a line placed over these starting at the target pre grazing cover and fishing at post grazing cover. From this it can be determined whether the farm has a surplus of deficit of feed.	
Grazing round/ rotation	Means the length of time before livestock return to graze the same paddock	
Imported feed	Means feed that is bought on to the farm	
Inherent risks	Means the risks posed to the environment from the biophysical characteristics of the land	
Intensive winter	Means the same as the NES-F interpretation:	
grazing	The grazing of livestock on an annual forage crop at any time in the period that begins on 1 May and ends on the 30 September of the same year	
Intermittent waterway	Means a waterway that only flows at certain times of the year, but does not include an artificial waterway unless they convey stormwater to an intermittent waterway	
Land management unit	Means a homogenous block of land that responds in a similar way under similar management	
Leading Practices	Means the on-farm activities that dairy farmers could undertake to go beyond Good Management Practices	
Maintenance fertiliser application	Means an application of nutrients that aims to maintain the balance between nutrient inputs and outputs as measured by the soil nutrient status from a soil test	
Minimum tillage	Means the process of establishing pasture or a crop using the minimum amount of soil disturbance	
New effluent system	Means a new or upgraded effluent system installed on or after 1 January 2023	
New irrigation system	Means a new or upgraded irrigation system installed on or after 1 January 2023	

Nutrient Budget	Means a modelled calculation outputs)
Offal pit	Means a covered hole excavate dead livestock
Overgrazing	Means the grazing of pasture to unprotected patches of soil
Permanent feed- out area	Means a purpose-built area wit for supplementary feeding or lo standoff pad, or loafing pad, bu
Permanent vegetation	Means an area where the vege
Permanent waterway	Means a waterway that flows ye waterways unless they convey s
Pugging (soil)	Means the damage caused to s
Purchased N-surplus	Means the sum of the nitrogen (including fertigation) and impo from the farm as products (mea
Response rate	Means the amount of pasture o nutrient applied (kg/ha)
Soil erosion control programme	Means a plan of works and farn areas on farm
Soil temperature	Means the temperature of the s
Stock composting area	Means a location on-farm used of composting
Stock crossing	Means infrastructure that is use prevent damage to the bed and waterway, they include bridges
Sub-surface drainage	Means the process of removing drains, tile drains and slotted pi
Supplementary feed	Means the additional homegro
Synthetic N-fertiliser	Means inorganic chemically mo
Temporary feed- out area	Means temporary areas of past
Well head	Means the component of a grou above the surface

n of the farm's annual nutrient flows (inputs and

ited on-farm for the purpose of disposing of offal and

to the point where cover is depleted leaving bare

vith an impervious surface that is regularly used loafing of dairy cattle, i.e., feed pad, winter pad, but not a sacrifice paddock

jetative ground cover is maintained

year-round, but does not include artificial y stormwater to a permanent waterway

o soil structure by stock trampling of saturated soils

n inputs used for production on the farm (fertiliser ported feed minus the total nitrogen that is removed eat, milk, crops, exported effluent, supplements sold)

or crop grown (kg/DM) in relation to the amount of

rm practices to manage the erosion susceptible

e soil at 9am each day

ed to dispose of dead livestock through the process

sed for stock to cross over a river or stream to nd avoid contaminants directly entering the es and culverts

ng excess water from the soil and includes mole pipes

rown or bought in feed used to fill feed deficits

manufactured nitrogenous fertilisers

asture where supplementary feed is fed to cattle

roundwater bore used for water abstraction that is

e the soil is predominantly saturated year-round

